Перпендикулярные плоскости, условие перпендикулярности плоскостей. Лекция по математике на тему "признак перпендикулярности двух плоскостей" Если прямая перпендикулярна линии пересечения двух

Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.

Yandex.RTB R-A-339285-1

При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.

Определение 1

При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.

Обозначение перпендикулярности принято писать знаком « ⊥ ». Если в условии дано, что плоскости α и β перпендикулярные, тогда запись принимает вид α ⊥ β . На рисунке ниже показано подробно.

Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.

Перпендикулярность плоскостей – признак и условие перпендикулярности

На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.

Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей.Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.

Теорема 1

Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.

Доказательство имеется в учебнике по геометрии за 10 - 11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.

Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.

Теорема 2

Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.

Доказательство

Пусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) , являющимися нормальными векторами заданных плоскостей α и β , то необходимым и достаточным условием перпендикулярности векторов n 1 → и n 2 → примет вид

n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0

Отсюда получаем, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n 1 → и n 2 → было равным нулю, а значит, принимало вид n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0 .

Равенство выполнено.

Рассмотрим подробнее на примерах.

Пример 1

Определить перпендикулярность плоскостей, заданных в прямоугольной системе координат O x y z трехмерно пространства, заданного уравнениями x - 3 y - 4 = 0 и x 2 3 + y - 2 + z 4 5 = 1 ?

Решение

Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.

x - 3 y - 4 = 0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n 1 → = (1 , - 3 , 0) .

Для определения координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 перейдем от уравнения плоскости в отрезках к общему.

Тогда получим:

x 2 3 + y - 2 + z 4 5 ⇔ 3 2 x - 1 2 y + 5 4 z - 1 = 0

Тогда n 2 → = 3 2 , - 1 2 , 5 4 - это координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 .

Перейдем к вычислению скалярного произведения векторов n 1 → = (1 , - 3 , 0) и n 2 → = 3 2 , - 1 2 , 5 4 .

Получим, что n 1 → , n 2 → = 1 · 3 2 + (- 3) · - 1 2 + 0 · 5 4 = 3 .

Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.

Ответ: плоскости не перпендикулярны.

Пример 2

Прямоугольная система координат O x y z имеет четыре точки с координатами A - 15 4 , - 7 8 , 1 , B 17 8 , 5 16 , 0 , C 0 , 0 , 3 7 , D - 1 , 0 , 0 . Проверить, перпендикулярны ли плоскости А В С и A B D .

Решение

Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n 1 → и n 2 → плоскостей А В С и A B D .

Из заданных координат точек вычислим координаты векторов A B → , A C → , A D → . Получаем, что:

A B → = 47 8 , 19 16 , - 1 , A C → = 15 4 , 7 8 , - 4 7 , A D → = 11 4 , 7 8 , - 1 .

Нормальный вектор плоскости А В С является векторным произведением векторов A B → и A C → , а для A B D векторное произведение A B → и A D → . Отсюда получим, что

n 1 → = A B → × A C → = i → j → k → 47 8 19 16 - 1 15 4 7 8 - 4 7 = 11 56 · i → - 11 28 · j → + 11 16 · k → ⇔ n 1 → = 11 56 , - 11 28 , 11 16 n 2 → = A B → × A D → = i → j → k → 47 8 19 16 - 1 11 4 7 8 - 1 = - 5 16 · i → + 25 8 · j → + 15 8 · k → ⇔ n 2 → = - 5 16 , 25 8 , 15 8

Приступим к нахождению скалярного произведения n 1 → = 11 56 , - 11 28 , 11 16 и n 2 → = - 5 16 , 25 8 , 15 8 .

Получим: n 1 → , n 2 → = 11 56 · - 5 16 + - 11 28 · 25 8 + 11 16 · 15 8 = 0 .

Если оно равно нулю, значит векторы плоскостей А В С и A B D перпендикулярны, тогда и сами плоскости перпендикулярны.

Ответ: плоскости перпендикулярны.

Можно было подойти к решению иначе и задействовать уравнения плоскостей А В С и A B D . После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Лекция по теме «Признак перпендикулярности двух плоскостей»

Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Рассмотрим две пересекающиеся плоскости. При пересечении они образуют четыре двугранных угла с общим ребром.

Вспомним, что из себя представляет двугранный угол.

В реальности мы встречаемся с предметами, которые имеют форму двугранного угла: например, приоткрытая дверь или полураскрытая папка.

При пересечении двух плоскостей альфа и бета получим четыре двугранных угла. Пусть один из двугранных углов равен (фи), тогда второй равен (180 0 –), третий, четвертый (180 0 -).

α и β, 0°< 90 °

Рассмотрим случай, когда один из двугранных углов равен 90 0 .

Тогда, все двугранные углы в этом случае равны по 90 0 .

двугранный угол между плоскостями α и β,

90º

Введем определение перпендикулярных плоскостей:

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

Угол между плоскостями сигма и эпсилон равен 90 градусов, значит плоскости перпендикулярны

Т.к. =90°

Приведем примеры перпендикулярных плоскостей.

Стена и потолок.

Боковая стенка и крышка стола.

Стена и потолок

Сформулируем признак перпендикулярности двух плоскостей:

ТЕОРЕМА: Если одна их двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Докажем этот признак.

По условию известно что прямая АМ лежит в плоскости α, прямая АМ перпендикулярна плоскости β,

Доказать: плоскости α и β перпендикулярны.

Доказательство:

1) Плоскости α и β пересекаются по прямой АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) Проведем в плоскости β прямую A Т перпендикулярную A Р.

Получим угол Т A М – линейный угол двугранного угла. Но угол Т A М = 90°, так как МА β. Значит, α β.

Что и требовалось доказать.

ТЕОРЕМА: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Дано: α, β, АМ α, АМβ, АМ∩=А

Доказать: αβ.

Доказательство:

1) α ∩ β = АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) АТβ, A Т A Р.

ТАМ– линейный угол двугранного угла. ТАМ = 90°, т.к. МА β. Значит, α β.

Что и требовалось доказать

Из признака перпендикулярности двух плоскостей имеем важное следствие:

СЛЕДСТВИЕ: Плоскость, перпендикулярная к прямой, по которой пересекаются две плоскости, перпендикулярна к каждой из этих плоскостей.

Докажем это следствие: если плоскость гамма перпендикулрна к прямой с то по признаку параллельностидвух плоскостей гамма перпендикулярна к альфа. Аналогично и гамма перпендикулярна бета

То есть: если α∩β=с и γс, то γα и γβ.

т.к. γс и сα из признака перпендикулярности γα.

Аналогично γ β

Указанное следствие переформулируем для двугранного угла:

Плоскость, проходящая через линейный угол двугранного угла перпендикулярна ребру и граням этого двугранного угла. Другими словами, если мы построили линейный угол двугранного угла, то проходящая через него плоскость перпендикулярна ребру и граням этого двугранного угла.

Задача.

Дано: ΔАВС, С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC = 60°, АС = 5 см, АВ = 13 см.

Найти: расстояние от точки В до плоскости α.

Решение:

1) Построим ВК α. Тогда КС - проекция ВС на эту плоскость.

2) ВС АС (по условию), значит, по теореме о трех перпендикулярах (ТТП), КС АС. Следовательно, ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника АВС. То есть ВСК = 60°.

3) Из ΔВСА по теореме Пифагора:

Из ΔВКС:

Две плоскости, которые пересекаются, называются перпендикулярными , если третья плоскость, перпендикулярная прямой пересечения этих двух плоскостей, пересекает их по перпендикулярным прямым (см. рисунок).

Любая плоскость, перпендикулярная к прямой пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым.

Признак перпендикулярности плоскостей
Теорема 1. Если плоскость проходит через прямую, перпендикулярную к другой плоскости, то эти плоскости перпендикулярны (см. рисунок).

Теорема 2. Если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она перпендикулярна и ко второй плоскости (см. рисунок).

Пример применения теоремы 2
Пусть есть две перпендикулярные плоскости и , которые пересекаются по прямой a (см. рисунок). Найти расстояние от точки A , которая лежит в плоскости и не лежит в плоскости , плоскости .

В плоскости строим перпендикуляр к a через точку A . Пусть он пересекает a в точке B . AB - искомое расстояние.
Обратите внимание на такое.
1. Через точку вне плоскости можно провести множество плоскостей, перпендикулярных к этой плоскости (см. рисунок). (Но все они пройдут через перпендикулярную к этой плоскости прямую, которая проходит через данную точку.)

2. Если плоскость перпендикулярна к данной плоскости, то это не значит, что она перпендикулярна и к произвольной прямой, параллельной этой плоскости.
Например, на рисунке ниже , и пересекаются по прямой b , причем a входит в одной из плоскостей и . Следовательно, прямая a в то же время параллельная двум перпендикулярным плоскостям.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Рассмотрим две пересекающиеся плоскости. При пересечении они образуют четыре двугранных угла с общим ребром.

Вспомним, что из себя представляет двугранный угол.

В реальности мы встречаемся с предметами, которые имеют форму двугранного угла: например, приоткрытая дверь или полураскрытая папка.

При пересечении двух плоскостей альфа и бета получим четыре двугранных угла. Пусть один из двугранных углов равен (фи), тогда второй равен (1800 -), третий, четвертый (1800-).

Рассмотрим случай, когда один из двугранных углов равен 900.

Тогда, все двугранные углы в этом случае равны по 900.

Введем определение перпендикулярных плоскостей:

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

Угол между плоскостями сигма и эпсилон равен 90 градусов, значит плоскости перпендикулярны

Приведем примеры перпендикулярных плоскостей.

Стена и потолок.

Боковая стенка и крышка стола.

Сформулируем признак перпендикулярности двух плоскостей:

ТЕОРЕМА: Если одна их двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Докажем этот признак.

По условию известно что прямая АМ лежит в плоскости α, прямая АМ перпендикулярна плоскости β,

Доказать: плоскости α и β перпендикулярны.

Доказательство:

1) Плоскости α и β пересекаются по прямой АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) Проведем в плоскости β прямую AТ перпендикулярную AР.

Получим угол ТAМ - линейный угол двугранного угла. Но угол ТAМ = 90°, так как МА β. Значит, α β.

Что и требовалось доказать.

Из признака перпендикулярности двух плоскостей имеем важное следствие:

СЛЕДСТВИЕ: Плоскость, перпендикулярная к прямой, по которой пересекаются две плоскости, перпендикулярна к каждой из этих плоскостей.

То есть: если α∩β=с и γ с, то γ α и γ β.

Докажем это следствие: если плоскость гамма перпендикулрна к прямой с то по признаку параллельностидвух плоскостей гамма перпендикулярна к альфа. Аналогично и гамма перпендикулярна бета

Указанное следствие переформулируем для двугранного угла:

Плоскость, проходящая через линейный угол двугранного угла перпендикулярна ребру и граням этого двугранного угла. Другими словами, если мы построили линейный угол двугранного угла, то проходящая через него плоскость перпендикулярна ребру и граням этого двугранного угла.

Дано: ΔАВС, С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC = 60°, АС = 5 см, АВ = 13 см.

Найти: расстояние от точки В до плоскости α.

1) Построим ВК α. Тогда КС - проекция ВС на эту плоскость.

2) ВС АС (по условию), значит, по теореме о трех перпендикулярах (ТТП), КС АС. Следовательно, ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника АВС. То есть ВСК = 60°.

3) Из ΔВСА по теореме Пифагора:

Ответ ВК равно 6 корней из трех см

Практическое использование (прикладной характер) перпендикулярности двух плоскостей.

Определение. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, и не принадлежащими одной плоскости.

Определение. Градусной мерой двугранного угла называется градусная мера любого из его линейных углов.

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 90 o .

Признак перпендикулярности двух плоскостей.

Свойства.

  1. В прямоугольном параллелепипеде все шесть граней представляют собой прямоугольники.
  2. Все двугранные углы прямоугольного параллелепипеда являются прямыми
  3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Задачи и тесты по теме "Тема 7. "Двугранный угол. Перпендикулярность плоскостей"."

  • Двугранный угол. Перпендикулярность плоскостей
  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

  • Перпендикуляр и наклонные. Угол между прямой и плоскостью - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 2 Заданий: 10 Тестов: 1

  • Параллельность плоскостей - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 8 Тестов: 1

  • Перпендикулярные прямые - Начальные геометрические сведения 7 класс

    Уроков: 1 Заданий: 17 Тестов: 1

Материал темы обобщает и систематизирует известные Вам из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.

Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.