Как определить работу силы сопротивления воздуха. Движение тела в поле тяжести с учётом сопротивления воздуха

Каждый велосипедист, мотоциклист, шофер, машинист, летчик или капитан корабля знает, что у его машины есть предельная скорость; превысить которую не удается никакими усилиями. Можно сколько угодно нажимать на педаль газа, но «выжать» из машины лишний километр в час невозможно. Вся развиваемая скорость идет на преодоление сил сопротивления движению .

Преодоление различного трения

Например, автомобиль имеет двигатель мощностью в пятьдесят лошадиных сил. Когда водитель нажимает газ до отказа, коленчатый вал двигателя начинает делать три тысячи шестьсот оборотов в минуту. Поршни как сумасшедшие мечутся вверх и вниз, подскакивают клапаны, вертятся шестеренки, а автомобиль движется хотя и очень быстро, но совершенно равномерно, и вся сила тяги двигателя уходит на преодоление сил сопротивления движению, в частности преодоление различного трения . Вот, например, как распределяется сила тяги двигателя между его «противниками» - разными видами при скорости автомобиля сто километров в час:
  • на преодоление трения в подшипниках и между шестеренками расходуется около шестнадцати процентов силы тяги мотора,
  • на преодоление трения качения колес по дороге - примерно двадцать четыре процента,
  • на преодоление сопротивления воздуха расходуется шестьдесят процентов силы тяги автомобиля.

Сопротивление воздуха

При рассмотрении сил сопротивления движению, таких как:
  • трение скольжения с увеличением скорости немного уменьшается,
  • трение качения изменяется очень незначительно,
  • сопротивление воздуха , совершенно незаметное при медленном движении, становится грозной тормозящей силой, когда скорость возрастает.
Воздух оказывается главным врагом быстрого движения . Поэтому кузовам автомобилей, тепловозам, палубным надстройкам пароходов придают округленную, обтекаемую форму, убирают все выступающие части, стараются сделать так, чтобы воздух мог их плавно обегать. Когда строят гоночные машины и хотят добиться от них наивысшей скорости, то для кузова автомобиля заимствуют форму у рыбьего туловища, а на такую скоростную машину ставят двигатель мощностью несколько тысяч лошадиных сил. Но что бы ни делали изобретатели, как бы ни улучшали обтекаемость кузова, всегда за всяким движением, как тень, следуют силы трения и сопротивления среды. И если они даже не увеличиваются, остаются постоянными, все равно машина будет иметь предел скорости. Объясняется это тем, что мощность машины - произведение силы тяги на ее скорость . Но раз движение равномерное - сила тяги целиком уходит на преодоление различных сил сопротивления. Если добиться уменьшения этих сил, то при данной мощности машина сможет развить большую скорость. А так как основным врагом движения при больших скоростях является сопротивление воздуха, то для борьбы с ним конструкторам и приходится так изощряться.

Сопротивлением воздуха заинтересовались артиллеристы

Сопротивлением воздуха прежде всего заинтересовались артиллеристы . Они старались понять, почему пушечные снаряды не так далеко летят, как им хотелось бы. Расчеты показали, что, если бы на Земле не было воздуха, снаряд семидесятишестимиллиметровой пушки пролетел бы не менее двадцати трех с половиной километров , а в действительности он падает всего лишь в семи километрах от пушки . Из-за сопротивления воздуха теряется шестнадцать с половиной километров дальности . Обидно, но ничего не поделаешь! Артиллеристы улучшали пушки и снаряды, руководствуясь главным образом догадкой и смекалкой. Что происходит со снарядом в воздухе, сначала было неизвестно. Хотелось бы посмотреть на летящий снаряд и увидеть, как он рассекает воздух, но снаряд летит очень быстро, глаз не может уловить его движения, а воздух и подавно невидим. Желание казалось несбыточным, но выручила фотография. При свете электрической искры удалось заснять летящую пулю. Искра сверкнула и на мгновение осветила пулю, пролетавшую перед объективом фотоаппарата. Ее блеска оказалось достаточно, чтобы получить моментальный снимок не только пули, но и воздуха, рассекаемого ею. На фотографии были видны темные полосы, расходящиеся от пули в стороны. Благодаря фотоснимкам стало ясно, что происходит, когда снаряд летит в воздухе. При медленном движении предмета частицы воздуха спокойно расступаются перед ним и почти не мешают ему, но при быстром - картина меняется, частицы воздуха уже не успевают разлетаться в стороны. Снаряд летит и, как поршень насоса, гонит впереди себя воздух и уплотняет его. Чем выше скорость, тем сильнее сжатие и уплотнение. Для того чтобы снаряд двигался быстрее, лучше пробивал уплотненный воздух, его головную часть делают заостренной.

Полоса завихренного воздуха

На фотоснимке летящей пули было видно, что-у нее позади возникает полоса завихренного воздуха . На образование вихрей тоже тратится часть энергии пули или снаряда. Поэтому у снарядов и пуль стали делать донную часть скошенной, это уменьшило силу сопротивления движению в воздухе. Благодаря скошенному дну дальность полета снаряда семидесятишестимиллиметровой пушки достигла одиннадцати - двенадцати километров .

Трение частиц воздуха

При полете в воздухе на скорости движения сказывается также трение частиц воздуха о стенки летящего предмета. Это трение невелико, но оно все же существует и нагревает поверхность. Поэтому приходится красить самолеты глянцевитой краской и покрывать их особым авиационным лаком. Таким образом, силы сопротивления движению в воздухе всем движущимся предметам возникают вследствие трех различных явлений:
  • уплотнения воздуха впереди,
  • образования завихрений позади,
  • небольшого трения воздуха о боковую поверхность предмета.

Сопротивление движению со стороны воды

Предметы, движущиеся в воде - рыбы, подводные лодки, самоходные мины - торпеды и проч., - встречают большое сопротивление движению со стороны воды . С увеличением скорости силы сопротивления воды растут еще быстрее, чем в воздухе. Поэтому и значение обтекаемой формы возрастает. Достаточно взглянуть на форму тела щуки. Она должна гоняться за мелкими рыбешками, поэтому для нее важно, чтобы вода оказывала минимальное сопротивление ее движению.
Форму рыбы придают самоходным торпедам, которые должны быстро поражать неприятельские суда, не давая им возможности уклониться от удара. Когда моторная лодка мчится по водной глади или торпедные катера идут в атаку, видно, как острый нос корабля или лодки режет волны, обращая их в белоснежную пену, а за кормой кипит бурун и остается полоса вспененной воды. Сопротивление воды напоминает сопротивление воздуха - вправо и влево от корабля бегут волны, а позади образуются завихрения - пенистые буруны; сказывается также и трение между водой и погруженной частью корабля. Разница между движением в воздухе и движением в воде состоит только в том, что вода - жидкость несжимаемая и перед кораблем не возникает уплотненной «подушки», которую приходится пробивать. Зато плотность воды почти в тысячу раз больше плотности воздуха . Вязкость воды тоже значительна. Вода не так-то уж охотно и легко расступается перед кораблем, поэтому сопротивление движению, которое она оказывает предметам, весьма велико. Попробуйте, например, нырнув под воду, похлопать там в ладоши. Это не удастся - вода не позволит. Скорости морских кораблей значительно уступают скоростям воздушных кораблей. Наиболее быстроходные из морских судов - торпедные катера развивают скорость в пятьдесят узлов, а глиссеры, скользящие по поверхности воды, - до ста двадцати узлов. (Узел - морская мера скорости; один узел составляет 1852 метра в час.)

Решение.

Для решения задачи рассмотрим физическую систему «тело – гравитационное поле Земли». Тело будем считать материальной точкой, а гравитационное поле Земли - однородным. Выделенная физическая система является незамкнутой, т.к. во время движения тела взаимодействует с воздухом.
Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, то изменение полной механической энергии системы равняется работе силы сопротивления воздуха, т.е. ∆ E = A c .

Нулевой уровень потенциальной энергии выберем на поверхности Земли. Единственной внешней силой в отношении системы «тело – Земля» является сила сопротивления воздуха, направленная вертикально вверх. Начальная энергия системы E 1 , конечная E 2 .

Работа силы сопротивления A.

Т.к. угол между силой сопротивления и перемещением равен 180° , то косинус равен -1, поэтому A = - F c h . Приравняем A.

Рассматриваемую незамкнутую физическую систему можно также описать теоремой от изменении кинетической энергии системы взаимодействующих между собой объектов, согласно которой изменение кинетической энергии системы равно работе, совершенной внешними и внутренними силами при ее переходе из начального состояния в конечное. Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, а внутренней – сила тяжести. Следовательно ∆ E к = A 1 + A 2 , где A 1 = mgh – работа силы тяжести, A 2 = F c hcos 180° = - F c h – работа силы сопротивления; ∆ E = E 2 – E 1 .

Решение.

Для решения задачи рассмотрим физическую систему «тело – гравитационное поле Земли». Тело будем считать материальной точкой, а гравитационное поле Земли - однородным. Выделенная физическая система является незамкнутой, т.к. во время движения тела взаимодействует с воздухом.
Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, то изменение полной механической энергии системы равняется работе силы сопротивления воздуха, т.е. ∆ E = A c .

Нулевой уровень потенциальной энергии выберем на поверхности Земли. Единственной внешней силой в отношении системы «тело – Земля» является сила сопротивления воздуха, направленная вертикально вверх. Начальная энергия системы E 1 , конечная E 2 .

Работа силы сопротивления A.

Т.к. угол между силой сопротивления и перемещением равен 180° , то косинус равен -1, поэтому A = - F c h . Приравняем A.

Рассматриваемую незамкнутую физическую систему можно также описать теоремой от изменении кинетической энергии системы взаимодействующих между собой объектов, согласно которой изменение кинетической энергии системы равно работе, совершенной внешними и внутренними силами при ее переходе из начального состояния в конечное. Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, а внутренней – сила тяжести. Следовательно ∆ E к = A 1 + A 2 , где A 1 = mgh – работа силы тяжести, A 2 = F c hcos 180° = - F c h – работа силы сопротивления; ∆ E = E 2 – E 1 .

Силами сопротивления называются силы, препятствующие движению автомобиля. Эти силы направлены против его движе­ния.

При движении на подъеме, характеризуемом высотой H п, длиной проекции В п на гори­зонтальную плоскость и углом подъема дороги α, на автомобиль действуют следующие силы со­противления (рис. 3.12): сила со­противления качению Р к , равная сумме сил сопротивления каче­нию передних (Р К|) и задних (Р К2) колес, сила сопротивления подъе­му Р п , сила сопротивления воз­духа Д и сила сопротивления раз­гону Р И . Силы сопротивления ка­чению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги Р Д .

Рис. 3.13. Потери энергии на внутреннее трение в шине:

а - точка, соответствующая мак­симальным значениям нагрузки и прогиба шины

Сила сопротивления качению

Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах).О потерях энергии на внутреннее трение в шине можно судить по рис. 3.13, на котором приведена зависимость между вертикаль­ной нагрузкой на колесо и деформацией шины - ее прогибом f ш .

При движении колеса по неровной поверхности шина, испы­тывая действие переменной нагрузки, деформируется. Линия αО, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, ха­рактеризует потери энергии на внутреннее трение между отдель­ными частями шины (протектор, каркас, слои корда и др.).

Потери энергии на трение в шине называются гистерезисом, а линия ОαО - петлей гистерезиса.

Потери на трение в шине необратимы, так как при деформа­ции она нагревается и из нее выделяется теплота, которая рассе­ивается в окружающую среду. Энергия, затрачиваемая на дефор­мацию шины, не возвращается полностью при последующем вос­становлении ее формы.

Сила сопротивления качению Р к достигает наибольшего зна­чения при движении по горизонтальной дороге. В этом случае

где G - вес автомобиля, Н; f - коэффициент сопротивления качению.

При движении на подъеме и спуске сила сопротивления каче­нию уменьшается по сравнению с Р к на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению

где α - угол подъема, °.

Зная силу сопротивления качению, можно определить мощ­ность, кВт,

затрачиваемую на преодоление этого сопротивления:

где v -скорости автомобиля,м/c 2

Для горизонтальной дороги соs0°=1 и

З
ависимости силы сопротивления качениюР к и мощности N К от скорости автомобиля v показаны на рис. 3.14

Коэффициент сопротивления качению

Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных

Рис 3.15. Зависимости коэффициента сопротивления качению от

Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)

факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01 ...0,1.Рассмотрим влияние различных факторов на коэффициент сопротивления качению.

Скорость движения . При изменении скорости движения в ин­тервале 0...50 км/ч коэффициент сопротивления качению изме­няется незначительно и его можно считать постоянным в указан­ном диапазоне скоростей.

При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно уве­личивается (рис. 3.15, а) вследствие возрастания потерь энергии в шине на трение.

Коэффициент сопротивления качению в зависимости от ско­рости движения можно приближенно рассчитать по формуле

где - скорость автомобиля, км/ч.

Тип и состояние покрытия дороги. На дорогах с твердым по­крытием сопротивление качению обусловлено главным образом деформациями шины.

При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.

На деформируемых дорогах коэффициент сопротивления ка­чению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образую­щейся колеи и состояния грунта.

Значения коэффициента сопротивления качению при рекомен­дуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:

Асфальто- и цементобетонное шоссе:

в хорошем состоянии..................................... 0,007...0,015

в удовлетворительном состоянии............... 0,015...0,02

Гравийная дорога в хорошем состоянии.... 0,02...0,025

Булыжная дорога в хорошем состоянии...... 0,025...0,03

Грунтовая дорога сухая, укатанная.............. 0,025...0,03

Песок.................................................................... 0,1...0,3

Обледенелая дорога, лед............................... 0,015...0,03

Укатанная снежная дорога............................. 0,03...0,05

Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьше­ние числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.

Давление воздуха в шине . На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопро­тивления качению повышается (рис. 3.15, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глу­бина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивле­ния качению имеет минимальное значение.

. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно - на до­рогах с твердым покрытием.

Момент, передаваемый через колесо . При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 3.15, в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10... 15 % больше, чем для ведомых.

Коэффициент сопротивления качению оказывает существен­ное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже не­большое уменьшение этого коэффициента обеспечивает ощути­мую экономию топлива. Поэтому неслучайно стремление конст­рукторов и исследователей создать такие шины, при использова­нии которых коэффициент сопротивления качению будет незна­чительным, но это весьма сложная проблема.

Это творческое задание для мастер-класса по информатике для школьников при ДВФУ.
Цель задания - выяснить, как изменится траектория тела, если учитывать сопротивление воздуха. Также необходимо ответить на вопрос, будет ли дальность полёта по-прежнему достигать максимального значения при угле бросания в 45°, если учитывать сопротивление воздуха.

В разделе "Аналитическое исследование" изложена теория. Этот раздел можно пропустить, но он должен быть, в основном, понятным для вас, потому что бо льшую часть из этого вы проходили в школе.
В разделе "Численное исследование" содержится описание алгоритма, который необходимо реализовать на компьютере. Алгоритм простой и краткий, поэтому все должны справиться.

Аналитическое исследование

Введём прямоугольную систему координат так, как показано на рисунке. В начальный момент времени тело массой m находится в начале координат. Вектор ускорения свободного падения направлен вертикально вниз и имеет координаты (0, -g ).
- вектор начальной скорости. Разложим этот вектор по базису: . Здесь , где - модуль вектора скорости, - угол бросания.

Запишем второй закон Ньютона: .
Ускорение в каждый момент времени есть (мгновенная) скорость изменения скорости, то есть производная от скорости по времени: .

Следовательно, 2-й закон Ньютона можно переписать в следующем виде:
, где - это равнодействующая всех сил, действующая на тело.
Так как на тело действуют сила тяжести и сила сопротивления воздуха, то
.

Мы будем рассматривать три случая:
1) Сила сопротивления воздуха равна 0: .
2) Сила сопротивления воздуха противоположно направлена с вектором скорости, и её величина пропорциональна скорости: .
3) Сила сопротивления воздуха противоположно направлена с вектором скорости, и её величина пропорциональна квадрату скорости: .

Вначале рассмотрим 1-й случай.
В этом случае , или .


Из следует, что (равноускоренное движение).
Так как (r - радиус-вектор), то .
Отсюда .
Эта формула есть не что иное, как знакомая вам формула закона движения тела при равноускоренном движении.
Так как , то .
Учитывая, что и , получаем из последнего векторного равенства скалярные равенства:

Проанализируем полученные формулы.
Найдём время полёта тела. Приравняв y к нулю, получим

Дальность полёта равна значению координаты x в момент времени t 0:

Из этой формулы следует, что максимальная дальность полёта достигается при .
Теперь найдём уравнение трактории тела . Для этого выразим t через x

И подставим полученное выражение для t в равенство для y .

Полученная функция y (x ) -- квадратичная функция, её графиком является парабола, ветви которой направлены вниз.
Про движение тела, брошенного под углом к горизонту (без учёта сопротивления воздуха), рассказывается в этом видеоролике.

Теперь рассмотрим второй случай: .

Второй закон приобретает вид ,
отсюда .
Запишем это равенство в скалярном виде:


Мы получили два линейных дифференциальных уравнения .
Первое уравнение имеет решение

В чём можно убедиться, подставив данную функцию в уравнение для v x и в начальное условие .
Здесь e = 2,718281828459... -- число Эйлера .
Второе уравнение имеет решение

Так как , , то при наличии сопротивления воздуха движение тела стремится к равномерному, в отличие от случая 1, когда скорость неограниченно увеличивается.
В следующем видеоролике говорится, что парашютист сначала движется ускоренно, а потом начинает двигаться равномерно (даже до раскрытия парашюта).


Найдём выражения для x и y .
Так как x (0) = 0, y (0) = 0, то


Нам осталось рассмотреть случай 3, когда .
Второй закон Ньютона имеет вид
, или .
В скалярном виде это уравнение имеет вид:

Это система нелинейных дифференциальных уравнений . Данную систему не удаётся решить в явном виде, поэтому необходимо применять численное моделирование.

Численное исследование

В предыдущем разделе мы увидели, что в первых двух случаях закон движения тела можно получить в явном виде. Однако в третьем случае необходимо решать задачу численно. При помощи численных методов мы получим лишь приближённое решение, но нас вполне устроит и небольшая точность. (Число π или квадратный корень из 2, кстати, нельзя записать абсолютно точно, поэтому при расчётах берут какое-то конечное число цифр, и этого вполне хватает.)

Будем рассматривать второй случай, когда сила сопротивления воздуха определяется формулой. Отметим, что при k = 0 получаем первый случай.

Скорость тела подчиняется следующим уравнениям:


В левых частях этих уравнений записаны компоненты ускорения .
Напомним, что ускорение есть (мгновенная) скорость изменения скорости, то есть производная от скорости по времени.
В правых частях уравнений записаны компоненты скорости. Таким образом, данные уравнения показывают, как скорость изменения скорости связана со скоростью.

Попробуем найти решения этих уравнений при помощи численных методов. Для этого введём на временной оси сетку : выберем число и будем рассматривать моменты времени вида : .

Наша задача -- приближённо вычислить значения в узлах сетки.

Заменим в уравнениях ускорение (мгновенную скорость изменения скорости) на среднюю скорость изменения скорости, рассматривая движение тела на промежутке времени :

Теперь подставим полученные аппроксимации в наши уравнения.

Полученные формулы позволяют нам вычислить значения функций в следующем узле сетки, если известны значения этих функций в предыдущем узле сетки.

При помощи описанного метода мы можем получить таблицу приближённых значений компонент скорости.

Как найти закон движения тела, т.е. таблицу приближённых значений координат x (t ), y (t )? Аналогично!
Имеем

Значение vx[j] равняется значению функции , для других массивов аналогично.
Теперь остаётся написать цикл, внутри которого мы будем вычислять vx через уже вычисленное значение vx[j], и с остальными массивами то же самое. Цикл будет по j от 1 до N .
Не забудьте инициализировать начальные значения vx, vy, x, y по формулам , x 0 = 0, y 0 = 0.

В Паскале и Си для вычисления синуса и косинуса имеются функции sin(x) , cos(x) . Обратите внимание, что эти функции принимают аргумент в радианах.

Вам необходимо построить график движения тела при k = 0 и k > 0 и сравнить полученные графики. Графики можно построить в Excel.
Отметим, что расчётные формулы настолько просты, что для вычислений можно использовать один только Excel и даже не использовать язык программирования.
Однако в дальнейшем вам нужно будет решить задачу в CATS, в которой нужно вычислить время и дальность полёта тела, где без языка программирования не обойтись.

Обратите внимание, что вы можете протестировать вашу программу и проверить ваши графики, сравнив результаты вычислений при k = 0 с точными формулами, приведёнными в разделе "Аналитическое исследование".

Поэкспериментируйте со своей программой. Убедитесь в том, что при отсутствии сопротивления воздуха (k = 0) максимальная дальность полёта при фиксированной начальной скорости достигается при угле в 45°.
А с учётом сопротивления воздуха? При каком угле достигается максимальная дальность полёта?

На рисунке представлены траектории тела при v 0 = 10 м/с, α = 45°, g = 9,8 м/с 2 , m = 1 кг, k = 0 и 1, полученные при помощи численного моделирования при Δt = 0,01.

Вы можете ознакомиться с замечательной работой 10-классников из г. Троицка, представленной на конференции "Старт в науку" в 2011 г. Работа посвящена моделированию движения теннисного шарика, брошенного под углом к горизонту (с учетом сопротивления воздуха). Применяется как численное моделирование, так и натурный эксперимент.

Таким образом, данное творческое задание позволяет познакомиться с методами математического и численного моделирования, которые активно используются на практике, но мало изучаются в школе. К примеру, данные методы использовались при реализации атомного и космического проектов в СССР в середине XX века.