Уравнения и неравенства со степенной функцией. Системы показательных уравнений и неравенств

На данном уроке мы рассмотрим различные показательные неравенства и научимся их решать, основываясь на методике решения простейших показательных неравенств

1. Определение и свойства показательной функции

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.

Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При , когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности, т. е. при данных значениях аргумента мы имеем монотонно возрастающую функцию (). При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно, т. е. при данных значениях аргумента мы имеем монотонно убывающую функцию ().

2. Простейшие показательные неравенства, методика решения, пример

На основании вышесказанного приведем методику решения простейших показательных неравенств:

Методика решения неравенств:

Уравнять основания степеней;

Сравнить показатели, сохранив или изменив на противоположный знак неравенства.

Решение сложных показательных неравенств заключается, как правило, в их сведении к простейшим показательным неравенствам.

Основание степени больше единицы, значит, знак неравенства сохраняется:

Преобразуем правую часть согласно свойствам степени:

Основание степени меньше единицы, знак неравенства необходимо поменять на противоположный:

Для решения квадратного неравенства решим соответствующее квадратное уравнение:

По теореме Виета находим корни:

Ветви параболы направлены вверх.

Таким образом, имеем решение неравенства:

Несложно догадаться, что правую часть можно представить как степень с нулевым показателем:

Основание степени больше единицы, знак неравенства не меняется, получаем:

Напомним методику решения таких неравенств.

Рассматриваем дробно-рациональную функцию:

Находим область определения:

Находим корни функции:

Функция имеет единственный корень,

Выделяем интервалы знакопостоянства и определяем знаки функции на каждом интервале:

Рис. 2. Интервалы знакопостоянства

Таким образом, получили ответ.

Ответ:

3. Решение типовых показательных неравенств

Рассмотрим неравенства с одинаковыми показателями, но различными основаниями.

Одно из свойств показательной функции - она при любых значениях аргумента принимает строго положительные значения, значит, на показательную функцию можно разделить. Выполним деление заданного неравенства на правую его часть:

Основание степени больше единицы, знак неравенства сохраняется.

Проиллюстрируем решение:

На рисунке 6.3 изображены графики функций и . Очевидно, что когда аргумент больше нуля, график функции расположен выше, эта функция больше. Когда же значения аргумента отрицательны, функция проходит ниже, она меньше. При значении аргумента функции равны, значит, данная точка также является решением заданного неравенства.

Рис. 3. Иллюстрация к примеру 4

Преобразуем заданное неравенство согласно свойствам степени:

Приведем подобные члены:

Разделим обе части на :

Теперь продолжаем решать аналогично примеру 4, разделим обе части на :

Основание степени больше единицы, знак неравенства сохраняется:

4. Графическое решение показательных неравенств

Пример 6 - решить неравенство графически:

Рассмотрим функции, стоящие в левой и правой части и построим график каждой из них.

Функция - экспонента, возрастает на всей своей области определения, т. е. при всех действительных значениях аргумента.

Функция - линейная, убывает на всей своей области определения, т. е. при всех действительных значениях аргумента.

Если данные функции пересекаются, то есть система имеет решение, то такое решение единственное и его легко можно угадать. Для этого перебираем целые числа ()

Несложно заметить, что корнем данной системы является :

Таким образом, графики функций пересекаются в точке с аргументом, равным единице.

Теперь нужно получить ответ. Смысл заданного неравенства в том, что экспонента должна быть больше или равна линейной функции, то есть быть выше или совпадать с ней. Очевиден ответ: (рисунок 6.4)

Рис. 4. Иллюстрация к примеру 6

Итак, мы рассмотрели решение различных типовых показательных неравенств. Далее перейдем к рассмотрению более сложных показательных неравенств.

Список литературы

Мордкович А. Г. Алгебра и начала математического анализа. - М.: Мнемозина. Муравин Г. К., Муравина О. В. Алгебра и начала математического анализа. - М.: Дрофа. Колмогоров А. Н., Абрамов А. М., Дудницын Ю. П. и др. Алгебра и начала математического анализа. - М.: Просвещение.

Math. md . Mathematics-repetition. com . Diffur. kemsu. ru .

Домашнее задание

1. Алгебра и начала анализа, 10-11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990, № 472, 473;

2. Решить неравенство:

3. Решить неравенство.

Способы решения систем уравнений

Для начала кратко вспомним, какие вообще существуют способы решения систем уравнений.

Существуют четыре основных способа решения систем уравнений:

    Способ подстановки: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

    Способ сложения: в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении вместе обоих одна из переменных «исчезла».

    Графический способ: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

    Способ введения новых переменных: в этом способе мы делаем замену каких-либо выражений для упрощения системы, а потом применяем один из выше указанных способов.

Системы показательных уравнений

Определение 1

Системы уравнений, состоящие из показательных уравнений, называются системой показательных уравнений.

Решение систем показательных уравнений будем рассматривать на примерах.

Пример 1

Решить систему уравнений

Рисунок 1.

Решение.

Будем пользоваться первым способом для решения данной системы. Для начала выразим в первом уравнении $y$ через $x$.

Рисунок 2.

Подставим $y$ во второе уравнение:

\ \ \[-2-x=2\] \ \

Ответ: $(-4,6)$.

Пример 2

Решить систему уравнений

Рисунок 3.

Решение.

Данная система равносильна системе

Рисунок 4.

Применим четвертый метод решения уравнений. Пусть $2^x=u\ (u >0)$, а $3^y=v\ (v >0)$, получим:

Рисунок 5.

Решим полученную систему методом сложения. Сложим уравнения:

\ \

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получил новую систему показательных уравнений:

Рисунок 6.

Получаем:

Рисунок 7.

Ответ: $(0,1)$.

Системы показательных неравенств

Определение 2

Cистемы неравенств, состоящие из показательных уравнений, называются системой показательных неравенств.

Решение систем показательных неравенств будем рассматривать на примерах.

Пример 3

Решить систему неравенств

Рисунок 8.

Решение:

Данная система неравенств равносильна системе

Рисунок 9.

Для решения первого неравенства вспомним следующую теорему равносильности показательных неравенств:

Теорема 1. Неравенство $a^{f(x)} >a^{\varphi (x)} $, где $a >0,a\ne 1$ равносильна совокупности двух систем

\U}